Salta al contenuto principale
Home
  • English
  • Deutsch
  • Français
  • Italiano

User account menu

  • Accedi

User login

CAPTCHA
Questa domanda è un test per verificare che tu sia un visitatore umano e per impedire inserimenti di spam automatici.
  • Crea nuovo profilo
  • Reimposta la tua password

Main navigation

  • Lampada UV
    • XERADEX® 172nm
    • XERADEX® altre lunghezze d'onda
    • Lampada UV ad alta pressione Suprasol
    • UVC T8 254nm
  • Emettitore IR
    • Riscaldatori a infrarossi Ralotherm
    • Raloquick - Onde medie veloci
    • Raloduo - radiatore a doppio tubo
  • Faretti speciali HID
    • Faretti HID per la simulazione solare
    • Lampade speciali per acquari e terrari
  • Applicazioni
    • Processi di essiccazione IR stampa/tessile
    • Termoformatura IR e saldatura plastica
    • IR nella produzione di semiconduttori
    • Essiccazione IR nella stampa 3D
    • Trattamento UV delle acque e delle acque reflue
    • Pulizia e attivazione delle superfici UV
    • Modifica UV delle superfici in silicone
    • Polimerizzazione UV e opacizzazione delle vernici
    • Polimerizzazione UV
    • Stuoia eccimeri UV
    • Purificazione dell'aria UV
    • Simulazione solare: test sui materiali come il sole
    • Illuminazione per acquari e terrari
  • TECH Wiki
    • Tecnologia degli eccimeri UV
    • Radiazione VUV
    • Nozioni di base sulla tecnologia delle radiazioni
    • Calore efficiente IR
    • Limiti specifici di radiazione/prestazioni IR
    • Simulazione solare
    • HID con componente UV in acquaristica e terraristica
  • Azienda
    • Chi siamo
    • Gestione
    • Storia
    • Qualità/Ambiente
    • Conformità
  • Servizio e contatti
    • Scarica
    • Notizia
    • Contattaci
    • Contatto con il Radium

VUV radiation: High-energy UV technology for industry and research

Mobile Menu

  • Lampada UV
  • Emettitore IR
  • Faretti speciali HID
  • Applicazioni
  • TECH Wiki
  • Azienda
  • Servizio e contatti

Briciole di pane

  1. TECH Wiki
  2. Radiazione VUV

High-Energy UV for Precision Applications

Vacuum ultraviolet radiation, or VUV for short, is a particularly high-energy range of electromagnetic radiation. It plays a central role in materials processing, semiconductor technology, and analytical measurement technology. Due to its short wavelength, it offers unique possibilities for surface modification and chemical activation. In this article, we examine the physical principles, applications, and advantages of VUV radiation.

   

Fundamentals of VUV Radiation

VUV stands for vacuum ultraviolet radiation and refers to the spectral range of ultraviolet radiation with wavelengths between 100 nm and 200 nm.The name derives from the fact that this radiation is quickly absorbed in air and can only propagate in a vacuum or in special noble gas atmospheres.

   

VUV spectrum in the electromagnetic spectrum:

VUV in the electromagnetic spectrum

   

Typical sources of VUV radiation are:

  • Excimer lamps (e.g., xenon at 172 nm)
  • Gas discharge lamps (e.g., deuterium lamps)
  • Synchrotron radiationfor research and analysis

VUV photons have high energy (up to over 10 eV) and can break chemical bonds, eject electrons from atoms, or functionalize surfaces – without thermal effects.
A key characteristic: The radiation penetrates materials only a few nanometers deep, enabling extremely close-to-surface effects.

   

Areas of Application and Materials

VUV radiation is primarily used in highly specialized industries and research institutions. The most important application areas include:

  • Surface Activation and Cleaning: VUV radiation selectively alters the chemical structure of the outermost layer of a material, e.g., to improve adhesion properties in plastics, glass, or semiconductors.
  • Plasma Technology and Photochemistry: The high photon energy is ideally suited for photoinitiated reactions, e.g., in the production of plasmas, plasmas, and plasmas. B. in semiconductor manufacturing or surface functionalization.
  • Analytical Methods: In photoelectron spectroscopy (UPS) or mass spectrometry, VUV is used for excitation or ionization.
  • Medical and Environmental Technology: Germ reduction and disinfection using VUV radiation are particularly effective due to the high energy and short penetration depth – e.g., in water treatment or cleanroom environments.

Suitable materials for irradiation include plastics, quartz glass, silicon, metal oxides, and technical glasses. A controlled environment (vacuum, nitrogen, or noble gases) is essential to prevent absorption losses.

   

Advantages of VUV Technology

Extremely shallow penetration
Due to its shallow penetration depth, VUV radiation can selectively influence the outermost molecular layers – without damaging the underlying material. Ideal for sensitive substrates.

High photon energy
VUV photons possess sufficient energy to break stable chemical bonds or excite electrons. This opens up diverse possibilities in photochemistry and microstructuring.

Chemical-free surface modification
Processing with VUV radiation can be carried out without aggressive wet chemicals – environmentally friendly and residue-free. This is particularly relevant for applications in medicine and the use of VUV radiation in semiconductor technology.

Precise Controllability
VUV emitters such as excimer lamps enable defined radiation doses at precisely known wavelengths – ideal for reproducible processes in research and industry.

   

Conclusion: VUV Radiation as a Precise Tool for the Microworld

VUV radiation combines maximum energy with minimal penetration depth – an ideal combination for precise surface treatment, activation, or analysis. Whether in electronics, environmental technology, or materials research: This technology offers powerful solutions for challenges where conventional UV or IR radiation reaches its limits.

   

Learn More

Radium TECH offers specialized excimer lamps for the VUV range – contact us today for a consultation on individual application scenarios and process solutions!

Radium TECH Application Center

Need any support with your customized UV or IR solution? Our experts are happy to help!

Find Contact Person

UV Lamps - Products

UV technology in applications for
the industrial and commercial sector.

Radium Product Catalog UV

Do you need other, innovative UV lamps?

Ask us, challenge us!

Excimer-Technologie

How does it work? What can it be used for?

Consult our Wiki

Excimer technology for precise surface treatment.

Operating Unit for Testing
or other specific request?

Whether specific emitter products or test module(s) for XERADEX® UV emitters for Radium TECH prototypes:

Request via contact form

Please enter your equipment requirements in the "Other" section of the form.

Thank you!

 Downloads

  • UV Excimer Technology
  • IR Technology
  • Other

Footer