Salta al contenuto principale
Home
  • English
  • Deutsch
  • Français
  • Italiano

User account menu

  • Accedi

User login

CAPTCHA
Questa domanda è un test per verificare che tu sia un visitatore umano e per impedire inserimenti di spam automatici.
  • Crea nuovo profilo
  • Reimposta la tua password

Main navigation

  • Lampada UV
    • XERADEX® 172nm
    • XERADEX® altre lunghezze d'onda
    • Lampada UV ad alta pressione Suprasol
    • UVC T8 254nm
  • Emettitore IR
    • Riscaldatori a infrarossi Ralotherm
    • Raloquick - Onde medie veloci
    • Raloduo - radiatore a doppio tubo
  • Faretti speciali HID
    • Faretti HID per la simulazione solare
    • Lampade speciali per acquari e terrari
  • Applicazioni
    • Processi di essiccazione IR stampa/tessile
    • Termoformatura IR e saldatura plastica
    • IR nella produzione di semiconduttori
    • Essiccazione IR nella stampa 3D
    • Trattamento UV delle acque e delle acque reflue
    • Pulizia e attivazione delle superfici UV
    • Modifica UV delle superfici in silicone
    • Polimerizzazione UV e opacizzazione delle vernici
    • Polimerizzazione UV
    • Stuoia eccimeri UV
    • Purificazione dell'aria UV
    • Simulazione solare: test sui materiali come il sole
    • Illuminazione per acquari e terrari
  • TECH Wiki
    • Tecnologia degli eccimeri UV
    • Radiazione VUV
    • Nozioni di base sulla tecnologia delle radiazioni
    • Calore efficiente IR
    • Limiti specifici di radiazione/prestazioni IR
    • Simulazione solare
    • HID con componente UV in acquaristica e terraristica
  • Azienda
    • Chi siamo
    • Gestione
    • Storia
    • Qualità/Ambiente
    • Conformità
  • Servizio e contatti
    • Scarica
    • Notizia
    • Contattaci
    • Contatto con il Radium

Solar Simulation – Definition, Technology and Applications

Mobile Menu

  • Lampada UV
  • Emettitore IR
  • Faretti speciali HID
  • Applicazioni
  • TECH Wiki
  • Azienda
  • Servizio e contatti

Briciole di pane

  1. TECH Wiki
  2. Simulazione solare

The Term "Solar Simulation" and Definition

Solar simulation refers to the artificial replication of sunlight in the laboratory to test materials, systems, and processes according to standards. Two main types are distinguished:

  1. Optical/Physical Solar Simulation – using lamps and illuminator systems (the focus here).
  2. Computer Simulation – software-based calculation of energy yields for PV systems.

   

Aims and Applications

  • Materials Testing:: Resistance to UV, visible, and IR radiation.
  • Photovoltaics: Standard-compliant testing of solar cells and modules (efficiency, aging).
  • Automotive: Climate chamber and solar roof tests.
  • Life Sciences: Photobiological experiments, skin protection product testing.
  • Photochemistry: Degradation and reaction studies.

   

Basics: Spectrum and Radiation Characteristics

 Range  Wavelength(nm)  Effect on materials
 UV-C  100–280  Strong photochemical effect, rapid material aging
 UV-B  280–315  Color change, polymer degradation
 UV-A  315–400  Long-term degradation, visual aging
 Visisble  400–780  Color appearance, photometry
 Infrared (IR)  780–4000  Heat exposure, expansion, stresses

   

Technical Implementation of the Solar Simulation

Light Sources:

  • Xenon Lamps – best spectral approximation to sunlight (AM1.5G).
  • Metal Halide Lamps (RSI/HRI) – high efficiency, large-area illumination.
  • LED Systems – spectrally tunable, long lifespan.
  • High-Pressure UV Lamps – targeted components for UV exposure tests.

Optical Elements:

  • Filters (for spectral matching)
  • Collimators (for homogenizing the radiation)
  • Reflectors (for increasing power)Optische Elemente:

Performance parameters:

 Parameter  Significance  Standard requirement (IEC 60904-9)
 Spectral match  Deviation from the reference spectrum  ≤ ± 25% per wavelength band (Class A)
 Homogeneity  Uniformity across the test area  ± 2% (Class A)
 Stability  Fluctuation over time  ≤ ± 2% in 10 min (Class A

   

Classification according to standards

Example: IEC 60904-9 & ASTM E927
 Class  Spectral match  Homogeneity  Stability
 A  ≤ ±25 %  ≤ ±2 %  ≤ ±2 %
 B  ≤ ±40 %  ≤ ±5 %  ≤ ±5 %
 C  ≤ ±60 %  ≤ ±10 %  ≤ ±10 %

Tip: For photovoltaic testing, class A+A+A+ is recommended to achieve the highest accuracy.

   

Image Comparisons (Suggestions for Visual Content)

  1. Sunlight Spectrum vs. HRI Lamp – Diagram showing spectral power distribution (AM1.5G vs. HRI).
  2. Test Setup in a PV Climate Chamber – Photo of a chamber with an HRI lamp array.
  3. Homogeneity Test – Thermal image or lux meter mapping of the test area.

   

Advantages over Field Tests – Reproducibility

  • Accelerated Aging
  • Standard Compliance
  • Combinability with Temperature, Humidity, Altitude

   

Conclusion

Solar simulators are essential for research, development, and quality assurance. With standard-compliant spectral quality, homogeneous irradiation, and high stability, they deliver reliable results – from PV module testing to material aging analysis. Radium TECH offers lamp systems such as HRI and Suprasol-HTC emitters, which are used for standard-compliant solar simulation.

Radium TECH Application Center

Need any support with your customized UV or IR solution? Our experts are happy to help!

Find Contact Person

Operating Unit for Testing
or other specific request?

Whether specific emitter products or test module(s) for XERADEX® UV emitters for Radium TECH prototypes:

Request via contact form

Please enter your equipment requirements in the "Other" section of the form.

Thank you!

 Downloads

  • UV Excimer Technology
  • IR Technology
  • Other

Footer