Przejdź do treści
Strona główna
  • English
  • Deutsch
  • Français
  • Polski

User account menu

  • Zaloguj

User login

CAPTCHA
To pytanie sprawdza czy jesteś człowiekiem i zapobiega wysyłaniu spamu.
  • Utwórz nowe konto
  • Ustaw nowe hasło

Main navigation

  • Lampy UV
    • XERADEX® 172nm
    • XERADEX® inne długości fal
    • Lampa wysokociśnieniowa UV Suprasol
    • UVC T8 254nm
  • Nadajnik podczerwieni
    • Grzejniki na podczerwień Ralotherm
    • Raloquick - Szybka fala średnia
    • Raloduo - grzejnik dwururowy
  • Specjalne reflektory HID
    • Reflektory HID do symulacji słonecznej
    • Specjalne lampy do akwariów i terrariów
  • Aplikacje
    • Procesy suszenia IR w druku/tekstyliach
    • Termoformowanie IR i spawanie tworzyw sztucznych
    • IR w produkcji półprzewodników
    • Suszenie IR w druku 3D
    • Oczyszczanie wody i ścieków promieniowaniem UV
    • Czyszczenie i aktywacja powierzchni UV
    • Modyfikacja UV powierzchni silikonowych
    • Utwardzanie UV i matowienie lakierów
    • Utwardzanie UV
    • Mata ekscymerowa UV
    • Oczyszczanie powietrza UV
    • Symulacja słoneczna: testowanie materiałów przypominających słońce
    • Oświetlenie akwariowe i terrariowe
  • TECH Wiki
    • Technologia ekscymerowa UV
    • Promieniowanie VUV
    • Podstawy technologii radiacyjnej
    • Efektywne ogrzewanie IR
    • Specyficzne promieniowanie IR/limity wydajności
    • Symulacja słoneczna
    • HID z komponentem UV w akwarystyce i terrarystyce
  • Spółka
    • O nas
    • Kierownictwo
    • Historia
    • Jakość/Środowisko
    • Zgodność
  • Serwis i kontakt
    • Pobieranie
    • Aktualności
    • Skontaktuj się z nami
    • Radium Kontakt

Specific emission and performance limits of infrared emitters

Mobile Menu

  • Lampy UV
  • Nadajnik podczerwieni
  • Specjalne reflektory HID
  • Aplikacje
  • TECH Wiki
  • Spółka
  • Serwis i kontakt

Ścieżka nawigacyjna

  1. TECH Wiki
  2. Specyficzne promieniowanie IR/limity wydajności

Physical Influences on Efficiency and Intensity

The characteristics of an infrared lamp are largely determined by physical principles – in particular by the Stefan-Boltzmann law, the emissivity of the material, and the temperature and area of ​​the radiating filament. This article complements the discussion of color temperature and provides more in-depth information on specific emission and the dependence of the lamp's output on material and geometry.

   

Stefan-Boltzmann Law: Temperature Determines Radiant Power

The specific radiant power of a body – that is, the radiant power emitted per unit area and time – follows the Stefan-Boltzmann Law:

        M(T)=ε⋅σ⋅T4 
  • ε: Emissivity (0–1), dependent on the material
  • σ: Stefan-Boltzmann constant
  • T: Absolute temperature in Kelvin

Stephan-Botzmann-Gesetz

This means: The emitted power increases with the fourth power of the temperature. A doubling of the filament temperature therefore leads to a 16 times higher radiant power per unit area – with the same emissivity.

   

Color Temperature and Total Power

Why “Colder” Emitters Are Less Efficient

Infrared lamps with a low color temperature (e.g. long-wave IR emitters) have correspondingly lower filament temperatures (approx. 500–1000°C). Due to the T4 dependency, this results in a comparatively low specific emission.

Example:

  • A NIR emitter with a filament temperature of 2500K emits significantly more energy per cm² than an FIR emitter with 900K.
  • The total output of an infrared lamp is therefore strongly temperature-dependent.

   

Coil Size

More Surface Area, more Total Output

Since the specific emission is limited at low temperatures, the total radiant output of a lamp can only be compensated for by a larger emitting surface:

        P=M(T)⋅A 
  • P: Total radiated power
  • A: Effective filament surface area

Larger filament = higher total power – this is particularly important for long-wave (low-temperature) radiators such as ceramic or carbon radiators.

   

Emissivity

Material Comparison – Carbon vs. Tungsten

Emissivity ε describes how efficiently a material emits radiation. An ideal blackbody would have ε=1. Real materials have values ​​below this:

  • Carbon coil: ε ≈ 0.85–0.95
  • Tungsten coil: ε ≈ 0.3–0.4

Therefore: Carbon emitters are significantly more efficient at the same temperature in terms of radiation output than tungsten emitters. Therefore, carbon IR emitters are preferred in applications where high area power at moderate temperatures is desired.

   

Possible Radiation Output

Limitations due to Temperature and Material Selection

The maximum achievable output of an infrared lamp results from the interplay of the following parameters:

  • Coil temperature – limited by material limitations (e.g., melting point, oxidation behavior)
  • Coil surface area – determines the total radiating surface area
  • Emissivity – directly influences the radiation intensity
  • Operating environment – e.g., vacuum, inert gas, or air (cooling, oxidation)

A well-designed IR emitter is therefore a precisely coordinated combination of geometry, material, and temperature range.

   

Conclusion: Physics Determines the Efficiency of every IR Lamp

Specific emission is not a technical quantity that can be increased arbitrarily – it follows the laws of thermodynamics. Only with a sound understanding of temperature behavior, emissivity, and material physics can high-performance infrared emitters be developed for diverse applications. Radium Tech utilizes this expertise to develop energy-efficient IR systems, individually tailored to industrial requirements.

   

Learn More

Contact us for a consultation! Our experts from Radium TECH Application Center are available to assist you with your development projects.

Radium TECH Application Center

Need any support with your customized UV or IR solution? Our experts are happy to help!

Find Contact Person

Infrared Heaters - Products

You can find in-stock and production-ready products in the

Radium Product Catalog IR

Do you need other innovative IR heaters?

Ask us, challenge us!

Operating Unit for Testing
or other specific request?

Whether specific emitter products or test module(s) for XERADEX® UV emitters for Radium TECH prototypes:

Request via contact form

Please enter your equipment requirements in the "Other" section of the form.

Thank you!

 Downloads

  • UV Excimer Technology
  • IR Technology
  • Other

Footer